CALCULATING THE TEMPERATURE DEPENDENCE OF THE SPECIFIC HEAT FOR

RARE-EARTH ARSENATES

Z. M. Sharipova and B. K. Kasenov

Equations have been derived for the temperature dependence of the specific heat for 14 rare-earth arsenates. The standard specific heats of some of them have also been calculated by Debye's and Ivanova's methods.

The rare-earth arsenates are promising materials as they have semiconducting, ferroelectric, and other valuable properties [1]. They also have high melting points (1800-2000°C) [2, 3], but up to now, no measurements have been made on the thermophysical and thermodynamic characteristics.

We have calculated the temperature dependence of the specific heat $C_p \sim f(T)$ by Landiya's method [4], which is the most reliable published one. The standard entropies of the MeAsO₄ needed to calculate the specific heats were derived by means of entropy increments for Me³⁺ (rare-earth cations) and AsO₄³⁻ [5]. The melting points of the MeAsO₄ were taken from [2]. Table 1 gives the calculated specific heats. The standard entropies and specific heats vary periodically in the sequence from La to Lu. The values of S₂₉₈⁰ and C_{p298}⁰ initially increase from La to Pr, have a minimum at Nd, rise to Ho, and fall to Lu.

The specific heats of some arsenates were also calculated by Debye's method [6, 7]. The characteristic temperatures of the elements Θ'_D for the elements in the arsenates were calculated from Coref's formula [6, 7]:

$$\Theta_{\rm D}' = \Theta_{\rm D} \sqrt{T_{\rm m}'/T_{\rm m}}, \qquad (1)$$

while conversion from the isochoric specific heat to the isobaric was by means of the Nernst-Lindeman equation [6, 7]:

$$C_p = C_v + 0.0051 C_p^2 / T_m \,. \tag{2}$$

TABLE 1. Arsenate Specific Heats

Arsenate	S [°] ₂₉₈ , J/mole•	C ⁰ _{p298,} J/mole•K			Coefficients in $C_p = a + bT - cT^{-2}$, J/mole ^{-K}			Temperature range, K
	K	De- bye	Iva- nova	Land- iya	a	b-10+s	-c·10-•	
LaAsO ₄ CeAsO ₄ PrAsO ₄ NdAsO ₄ SmAsO ₄ GdAsO ₄ GdAsO ₄ TbAsO ₄ DyAsO ₄ HoAsO ₄ ErAsO ₄ TmAsO ₄ YbAsO ₄ LuAsO ₄	$127,9 \\135,5 \\142,9 \\136,7 \\137,5 \\136,8 \\141,2 \\146,5 \\146,4 \\147,6 \\145,6 \\145,6 \\142,1 \\138,6 \\124,0 \\$	95,89 97,22 98,59 98,59 98,59	$\begin{array}{c} 116,59\\ 116,58\\ 116,53\\ 116,51\\ 116,50\\ 116,48\\ 116,46\\ 116,46\\ 116,43\\ 116,38\\ 116,28\\ 116,28\\ 116,20\\ 116,15\\ \end{array}$	112,49 111,24 115,90 114,75 115,05 114,93 116,08 115,97 116,46 116,57 116,27 115,73 115,17 112,56	121,78 133,64 131,40 131,51 131,52 131,55 131,38 131,65 131,82 131,51 131,57 131,77 131,70 132,09	35,86 20,4 23,3 22,99 23,0 22,94 23,11 23,15 22,77 23,19 23,01 22,52 22,30 21,45	17,8 22,8 20,05 21,10 20,8 20,9 19,8 20,9 19,8 19,5 19,8 20,3 20,3 20,8 23,1	298-2103 298-2110 298-2128 298-2133 298-2133 298-2133 298-2153 298-2153 298-2153 298-2153 298-2163 298-2183 298-2183 298-2253 298-2253 298-2253

Chemical and Metallurgical Institute, Kazakh Academy of Sciences, Karaganda. Translated from Inzhenerno-Fizicheskii Zhurnal, Vol. 59, No. 6, pp. 956-958, December, 1990. Original article submitted December 13, 1989. The C_{p298}^{0} from Debye's method are lower than from Landiya's because Debye's theory gives a good description of the specific heats for crystals of high symmetry but not for medium and low ones. Debye's method could not be applied to estimate C_p for the other arsenates because there are no published Θ_D for those metals.

The standard specific heats were also calculated from Ivanova's scheme [7]

$$C_{p_{2}98}^{o} = m(22, 14 + 8, 32T/T_{t}).$$
⁽³⁾

The C_{p298} from that method agree satisfactorily with Landiya's, but the method does not enable one to trace the periodic variation in C_p in the series. Also, all the C_p for the MeAsO₄ are approximately the same. We thus consider that Landiya's method gives the most reliable C_p for the arsenates, which are close to the measured values.

NOTATION

 C_p isobaric specific heat; MeAsO₄ rare-earth arsenate; Me³⁺ rare-earth cation; AsO₄³⁻ arsenate ion; S₂₉₈⁰ standard entropy; C_{p298}⁰ standard specific heat; O'_D characteristic temperatures of the elements for the arsenates; T' melting point of arsenate; T_m melting point of element, C_v isochoric specific heat; m number of atoms in compound; T_t temperature of the first phase transition; T temperature at which the corresponding C_p⁰ is determined.

LITERATURE CITED

- E. M. Nanobashvili, Ts. G. Demetrashvili, Ts. D. Gabisoniya, et al., Thio and Oxo Compounds of Transition Metals Based on Indium and Arsenic, Part 1 [in Russian], Tbilisi (1984).
- 2. L. E. Angapova and V. V. Serebrennikov, Zh. Neorg. Khim., <u>18</u>, No. 6, 1706-1708 (1973).
- V. P. Glushko (ed.), Thermal Constants of Substances: Handbook [in Russian], Issue 8, Part 1, Moscow (1978).
- 4. N. A. Landiya, Calculating High-Temperature Specific Heats for Solid Inorganic Substances from Standard Entropies [in Russian], Tbilisi (1962).
- 5. V. N. Kumok, Direct and Inverse Tasks in Chemical Thermodynamics [in Russian], Novosibirsk (1987), pp. 108-123.
- 6. A. G. Morachevskii and I. B. Sladkov, Handbook on Thermodynamic Calculations [in Russian], Leningrad (1975).
- 7. A. G. Morachevskii and I. B. Sladkov, Thermodynamic Calculations in Metallurgy [in Russian], Moscow (1985).